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Chapter 1. Introduction

1.1 Fluid Mechanics

Fluid Mechanics is the branch of science concerned with the behaviour of liquids and gases at rest and in
motion.

This is very important, since fluids are present everywhere, in nature, biology and engineering.

The range of length scales and flow speeds is enormous, but interestingly, they are all governed by the same
equations.

1.2 Units of Measurement

For mechanical systems, the units of all physical variables can be expressed in terms of the units of four
basic variables.

Quantity Name of unit Symbol Equivalent

Length Meter m
Mass Kilogram kg
Time Second s
Temperature Kelvin K

Frequency Hertz Hz s-1

Force Newton N kg m s-2

Pressure Pascal Pa N m-2

Energy Joule J N m
Power Watt W J s-1

1.3 Solids, Liquids, and Gases

1.3.1 Fluids

A fluid (i.e. liquids or gases) deforms continuously when however small shear stress is applied. It does not
have a preferred shape. Fluids generally fall into two classes, liquids and gases. A gas always expands to
fill the entire volume of its container. In contrast, the volume of a liquid changes little, so that it may not
completely fill a large container.

1.3.2 Solids

A solid does not deform continuously when a shear stress is applied and it relaxes back to a preferred shape
when this stress is removed. An elastic solid has a perfect memory of its preferred shape (because it always
springs back to its preferred shape when unloaded) and an ordinary viscous fluid has zero memory (because
it never springs back when unloaded). Some substances can be called viscoelastic because they partially
rebound when unloaded.
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1.4 Continuum Hypothesis Summary by Ellis de Wit

1.3.3 Stresses

Solids and fluids behave very differently when subjected to shear stresses, they behave similarly under the
action of compressive normal stresses. However, tensile normal stresses again lead to differences in fluid and
solid behaviour.

1.3.4 Newtonian Fluid

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly
correlated to the local strain rate, the rate of change of its deformation over time. Newtonian fluids are the
simplest mathematical models of fluids that account for viscosity.

Newton’s law of friction is given by:

τ = µ
du

dy
(1.1)

τ = F/A is the shear stress, with A the area of the plate and µ is the viscosity.

1.4 Continuum Hypothesis

A fluid is discontinuous or discrete at the most microscopic scales. The average manifestation of molecular
motions is more important for macroscopic fluid mechanics.
When the molecular density of the fluid and the size of the region of interest are large enough, such average
properties are sufficient for explaining macroscopic phenomena and the discrete molecular structure of matter
may be ignored and replaced with a continuous distribution, called a continuum.

Continuum assumption: in a continuum, fluid properties like density or velocity are defined to be appro-
priate averages of molecular characteristics in a small region δV surrounding the point of interest.

1.6 Surface Tension

Surface tension σ is defined as the magnitude of the tensile force that acts per unit length to open a line
segment lying on the surface. It has dimension N m−1.
Alternatively, σ can be thought of as the energy needed to create a unit of interfacial area. In general,
σ depends on the pair of fluids in contact, the temperature, and the presence of surface-active chemicals
(surfactants) or impurities, even at very low concentrations.

Force equilibrium for spherical droplet yields:

σ · (2πR) = (pinside − poutside)πR
2 (1.2)

or
pi − po = 2σ/R (1.3)

pi − po is the Laplace pressure.

If one puts a droplet on a surface, its shape depends on the 3 different materials (surface (solid), droplet
(liquid) and surrounding (gas)), or the surface tensions of the 3 different materials. This shape can be
characterized by the contact angle.

Horizontal equilibrium yields Young’s equations:

σSG = σLG cos (θC) + σSL (1.4)

From which the definition of the contact angle follows:

cos (θC) =
σSG − σSL

σLG
(1.5)
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1.7 Fluid Statics Summary by Ellis de Wit

contact angle

σSG < σSL hydrophobic 105o − 120o

σSG > σSL hydrophilic 0o − 30o

The free surface of a liquid in a narrow tube (capillary tubes) rises above the surrounding level due to the
influence of surface tension.

1.7 Fluid Statics

The magnitude of the force per unit area in a static fluid is called the pressure. Sometimes the ordinary
pressure is called the absolute pressure, in order to distinguish it from the gauge pressure, which is
defined as the absolute pressure minus the local atmospheric pressure:

pgauge = p− patm (1.6)

p is the absolute pressure, patm is 101.3 kPa = 1.013 Bar.

In a fluid at rest, tangential shear stresses are absent and the only force between adjacent surfaces is normal
to the surface. As a result, the pressure is equal in all directions. Shear stresses are absent, otherwise, the
fluid wouldn’t be at rest (see Newton’s law of friction).

The spatial distribution of pressure in a static fluid can be determined from a three-dimensional force balance.
Consider an infinitesimal cube of sides dx, dy, and dz, with the z-axis vertically upward.

It is clear that:
∂p/∂x = ∂p/∂y = 0

The balance of forces is expressed by Pascal’s law, which states that all points in a resting fluid medium
(and connected by the same fluid) are at the same pressure if they are at the same depth.

dp

dz
= −ρg (1.7)

Integration (assuming constant density) gives:

p = p0 − ρgz (1.8)

Where p0 is the pressure at z = 0.

We can obtain an approximate expression for the pressure distribution of the atmosphere by combining this
with the perfect gas law p = ρRT at isothermal conditions (T = 250 K):

dp/dz = −ρg = −pg/RT −→ p(z) = p0e
−gz/RT (1.9)

The quantity RT/g = 7.3 km is called the scale height of the atmosphere and gives an estimate of its
thickness.
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1.11 Dimensional Analysis Summary by Ellis de Wit

1.11 Dimensional Analysis

From the problem geometry, boundary conditions, initial conditions, material parameters and one solution
variable, find the n dimensional (system) parameters q1, q2, q3, . . . , qn. Buckingham’s theorem states that
these n variables can be combined into n − r dimensionless groups Πi(i = 1, n − r), so that the solution of
the problem can be written as

Π1 = φ (Π2,Π3, . . . ,Πn−r)

Here, r is the number of independent dimensions and Π1 includes the solution variable.

Now, how the fuck do you do this?

Step 1. Select Variables and Parameters

Create a list of variables and parameters that appear in the problem.

Step 2. Create the Dimensional Matrix

Express the dimensions of all the variables in terms of four basic dimensions: mass M , length L, time T ,
and temperature θ.

Step 3. Determine the Rank of the Dimensional Matrix

The rank, r of this matrix is given by the number of basic dimensions that occur in the problem.

Step 4. Determine the Number of Dimensionless Groups

The number of dimensionless groups is n − r where n is the number of variables and parameters, and r is
the rank of the dimensional matrix.

Step 5. Construct the Dimensionless Groups

Select r parameters from the dimensional matrix as repeating parameters that will be found in all the
subsequently constructed dimensionless groups. These repeating parameters must span the appropriate r-
dimensional space ofM , L, and/or T . For many fluid-flow problems, a characteristic velocity, a characteristic
length, and a fluid property involving mass are ideal repeating parameters.

Step 6. State the Dimensionless Relationship

This step merely involves placing the (n− r)Π−groups in the right form.

ϕ (Π1,Π2, . . . ,Πn−r,) = 0 or Π1 = φ (Π2,Π3,, . . . ,Πn−r,)

Step 7. Use Physical Reasoning or Additional Knowledge to Simplify the Dimensionless Re-
lationship

Sometimes there are only two extensive thermodynamic variables involved and these must be proportional
in the final scaling law. An overall conservation law can be applied that restricts one or more parametric
dependencies or a phenomenon may be known to be linear, quadratic, etc. in one of the parameters and this
dependence must be reflected in the final scaling law.
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1.11 Dimensional Analysis Summary by Ellis de Wit

1.11.1 Commonly Used Parameters and Their Units

Quantity Symbol M L T

Velocity U 0 1 -1
Density ρ 1 -3 0
Viscosity µ 1 -1 -1
Surface tension σ 1 0 -2
Friction τ 1 -1 -2
Gravity g 0 1 -2
Frequency f 0 0 -1
Force F 1 1 -2
Pressure p 1 -1 -2
Energy E 1 2 -2
Power P 1 2 -3
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Summary by Ellis de Wit

Chapter 2. Cartesian Tensors

2.1 Scalars, Vectors, Tensors, Notation

2.1.1 Zero-Order Tensors

Scalars or zero-order tensors may be defined with a single magnitude and appropriate units, and may
vary with spatial location, but are independent of coordinate directions.

2.1.2 First-Order Tensors

Vectors or first-order tensors have both a magnitude and a direction. A vector can be completely
described by its components along three orthogonal coordinate directions. Thus, the components of a vector
may change with a change in coordinate system. In a Cartesian coordinate system with unit vectors e1, e2,
and e3, in the three mutually perpendicular directions, the position vector x may be written:

x = x1e1 + x2e2 + x3e3

For algebraic manipulation, a vector is written as a column matrix:

x =

 x1
x2
x3

 where e1 =

 1
0
0

 , e2 =

 0
1
0

 , and e3 =

 0
0
1


2.1.3 Second-Order Tensors

Second-order tensors have a component for each pair of coordinate directions and therefore may have as
many as 3× 3 = 9 separate components.

2.1.4 Einstein Summation Convention

A second implicit feature of index-based or indicial notation is the implied sum over a repeated index in
terms involving multiple indices. This notational convention can be stated as follows: whenever an index
is repeated in a term, a summation over this index is implied, even though no summation sign is explicitly
written. This is sometimes referred to as the Einstein summation convention.

u · v = v · u = u1v1 + u2v2 + u3v3 =

3∑
i=1

uivi ≡ uivi

2.2 Rotation of Axes: Formal Definition of a Vector

Let O123 be the original coordinate system, and O1′2′3′ be the rotated system that shares the same origin
O. The position vector x can be written in either coordinate system:

x = x1e1 + x2e2 + x3e3, or x = x′1e
′
1 + x′2e

′
2 + x′3e

′
3

Coordinate can be found by taking the inner product with axis e′1:

x · e′1 = x1e1 · e′1 + x2e2 · e′1 + x3e3 · e′1 = x′1

where the dot products between unit vectors are direction cosines.

Forming the dot products x · e′2 = x′2 and x · e′3 = x′3, and then combining these results produces:

x′j = x1C1j + x2C2j + x3C3j =

3∑
j=1

xiCij ≡ xiCij

where Cij = ei · e′j is a 3× 3 matrix of direction cosines. Here, the free or not-summed-over index is j, while
the repeated or summed-over index can be any letter other than j.

Cij =

[
e1 · er e1 · eθ
e2 · er e2 · eθ

]
=

[
cos θ − sin θ
sin θ cos θ

]
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2.3 Multiplication of Matrices Summary by Ellis de Wit

2.3 Multiplication of Matrices

Let A and B be two 3×3 matrices. The inner product of A and B is defined as the matrix P whose elements
are related to those of A and B by:

Pij =

3∑
k=1

AikBkj ≡ AikBkj , or P = A ·B

In explicit form, this is written as:

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 B11 B12 B13

B21 B22 B23

B31 B32 B33



The dashed box denotes the entry:

P12 = A11B12 +A12B22 +A13B32

2.4 Second-Order Tensors

Nearly all the tensors considered in Newtonian fluid mechanics are zero-, first-, or second-order tensors. A
second-order tensor can be represented by nine components, one for each pair of directions and denoted by
two free indices.

Consider the stress tensor τ or τij . Its two free indices specify two directions; the first (i) index of Tij denotes
the direction of the surface normal, and the second (j) index denotes the force component direction.

The state of stress at a point can be completely specified by the nine components τij (where i, j = 1, 2, 3)
that can be written as the matrix:

τ =

 τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33


It can be shown by a force balance on a tetrahedron element that the components of T in the rotated
coordinate system are:

τ ′mn =

3∑
i=1

3∑
j=1

CimCjnτij ≡ CimCjnτij

For example, A is a fourth-order tensor if it has four free indices, and the associated 34 = 81 components
change under a rotation of the coordinate system according to:

A′
mνq =

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

CimCjnCkpClqAijkl ≡ CimCjnCkpClqAijkl

2.5 Contraction and Multiplication

When the two indices of a tensor are equated, and a summation is performed over this repeated index, the
process is called contraction. An example is:

3∑
j=1

Ajj ≡ Ajj = A11 +A22 +A33

which forms a scalar.
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2.6 Force on a Surface Summary by Ellis de Wit

When two second-order tensors A and B are multiplied a fourth-order tensor is formed with components
AijBkl. Lower-order tensors can be formed by performing a contraction (‘dot-product’ or inner product),
leading to a second-order tensor:

3∑
i=1

AijBjk ≡ AijBjk = (A ·B)ik

or, when a 2th-order tensor is multiplied in contracted form with a vector, a vector is formed:

3∑
i=1

Aijuj ≡ Aijuj = (A · u)i

and, finally, the double contraction, or ‘double dot product’ is defined as

3∑
i=1

3∑
j=1

AijBji ≡ AijBji(= A : B)

resulting in a scalar.

2.6 Force on a Surface

The force on a surface per unit area, f(n) with components fi is given by:

fi =

3∑
j=1

τjinj ≡ τjinj or f = n · τ

which is similar to finding the components of a vector along n:

un = u · n,

although un is a scalar and f is a vector.

2.7 Kronecker Delta and Alternating Tensor

The Kronecker delta is defined as:

δij =

{
1 if i = j
0 if i ̸= j

}
and has the following properties:

δijuj = ui, δijδjk = δik, and, δii = 3

The alternating tensor or permutation symbol is defined as:

εijk =


1 if ijk = 123, 231, or 312 (cyclic order),

0 if any two indices are equal,

−1 if ijk = 321, 213, or 132( anti-cyclic order )


From this definition, it is clear that an index on εijk can be moved two places (either to the right or to the
left) without changing its value.

A very frequently used relation is the epsilon delta relation:

3∑
k=1

εijkεklm ≡ εijkεklm = δilδjm − δimδjl

Additionally:
εijkεijk = 6
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2.8 Vector Dot and Cross Products Summary by Ellis de Wit

2.8 Vector Dot and Cross Products

Dot-product

u · v = v · u = u1v1 + u2v2 + u3v3 =

3∑
i=1

uivi ≡ uivi

Cross-product
u× v = (u2v3 − u3v2) e1 + (u3v1 − u1v3) e2 + (u1v2 − u2v1) e3

Alternatively, the cross product can be written as a determinant:

u× v = det

 e1 e2 e3
u1 u2 u3
v1 v2 v3


or, in indicial notation,

(u× v)k =

3∑
i=1

3∑
j=1

εijkuivj ≡ εijkuivj = εkijuivj

2.9 Gradient, Divergence, and Curl

Del-operator

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
=

3∑
i=1

ei
∂

∂xi
≡ ei

∂

∂xi

Gradient of a scalar function

∇ϕ =

3∑
i=1

ei
∂ϕ

∂xi
≡ ei

∂ϕ

∂xi

The gradient of ϕ is perpendicular to surfaces defined by ϕ = constant. The spatial rate of change of ϕ in
the direction of n is defined as

∂ϕ/∂n = ∇ϕ · n
Divergence of a vector field

∇ · u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

=

3∑
i=1

∂ui
∂xi

≡ ∂ui
∂xi

Divergence of a second order tensor (e.g. stress)

(∇ · τ)i =
3∑
j=1

∂τij
∂xj

≡ ∂τij
∂xj

curl of a vector field

(∇× u)i =

3∑
j=1

3∑
k=1

εijk
∂uk
∂xj

≡ εijk
∂uk
∂xj

A vector-field is divergence-free (solenoidal) when ∇ · u = 0, and curl-free (irrotational) when ∇× u = 0.

2.10 Symmetric and Antisymmetric Tensors

A tensor B is symmetric when Bij = Bji and anti-symmetric when Bij = −Bji. Any tensor can be
represented by the sum of a symmetric Sij and antisymmetric tensor Aij :

Bij =
1

2
(Bij +Bji) +

1

2
(Bij −Bji) = Sij +Aij

As a result, the double contraction of a symmetric tensor Tij and another tensor Bij can be written as

TklBkl = Tkl (Skl +Akl) = TklSkl + TkAkl = TijSij + TijAij
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2.12 Gauss’ Theorem Summary by Ellis de Wit

2.12 Gauss’ Theorem

For a given scalar, vector or tensor field Q(x), Gauss’ theorem states that∫∫∫
V

∂Q

∂xi
dV =

∫∫
A

niQdA

The most common form is when Q is a vector field, leading to∫∫∫
V

3∑
i=1

∂Qi
∂xi

dV ≡
∫∫∫

V

∂Qi
∂xi

dV =

∫∫
A

3∑
i=1

niQidA ≡
∫∫

A

niQidA,

or

∫∫∫
V

∇ ·QdV =

∫∫
A

n ·QdA,
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Summary by Ellis de Wit

Chapter 3. Kinematics

3.1 Introduction and Coordinate Systems

Kinematics is the description of motion without reference to the forces or stresses that produce the motion.

Time-dependence of flow: When a flow changes with time, it is termed unsteady. When it does not it is
called steady.

3.1.1 Dimensionality of Flow

A truly one-dimensional flow is one in which the flow’s characteristics can be entirely described with one
independent spatial variable.

A two-dimensional, or plane, flow is one in which the variation of flow characteristics can be described
by two spatial coordinates.

A three-dimensional flow is one that can only be properly described with three independent spatial
coordinates and is the most general case.

3.2 Particle and Field Descriptions of Fluid Motion

There are two ways to describe fluid motion:

• Lagrangian description: fluid particles are followed as they move through the flow field

• Eulerian description: flow field characteristics (e.g. fluid velocity) are monitored at fixed locations
in space.

Understanding both is necessary, however, the Eulerian description is the favoured description in fluid
dynamics (in contrast to solid mechanics, where the Lagrangian description is preferred).

3.2.1 Lagrangian Description

The Lagrangian description is based on the motion of fluid particles. The particle path r (t; r0, t0) specifies
the location of the fluid particle that started at location r0 at time t0. Thus,

u = dr (t; ro, to) /dt and a = d2r (t; ro, to) /dt
2 (3.1)

Additionally, any flow property F might depend on the path followed by the particle, where F can be any
scalar, vector or tensor property of the flow field.

F = F [r (t; r0, t0) , t] (3.2)

3.2.2 Eulerian Description

The Eulerian description focuses on flow field properties in fixed regions of interest and involves four inde-
pendent variables: the three spatial coordinates represented by the position vector x, and time t:

F = F (x, t) (3.3)

To link the two descriptions we require equality of F when r and x define same point in space:

F [r (t; ro, to) , t] = F (x, t) when x = r (t; ro, to) (3.4)

Here the second equation specifies the trajectory followed by a fluid particle.
Applying a total time derivative to the first equation produces:

d

dt
F [r (t; ro, to) t] =

∂F

∂r1

dr1
dt

+
∂F

∂r2

dr2
dt

+
∂F

∂r3

dr3
dt

+
∂F

∂t
=

d

dt
F (x, t) when x = r (t; ro, to) (3.5)
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3.3 Flow Lines, Fluid Acceleration, and Galilean Transformation Summary by Ellis de Wit

The time derivatives of ri are the components ui of the fluid particle’s velocity u. When x = r, it holds that
∂F/∂ri = ∂F/∂xi, so the right side of can be rewritten entirely in the Eulerian description:

d

dt
F [r (t; ro, to) , t] =

∂F

∂x1
u1 +

∂F

∂x2
u2 +

∂F

∂x3
u3 +

∂F

∂t
= (∇F ) · u+

∂F

∂t
≡ D

Dt
F (x, t) (3.6)

where the final equality defines D/Dt as the total time derivative in the Eulerian description of fluid motion.

DF

Dt
≡ ∂F

∂t
+ u · ∇F (3.7)

The material derivative D/Dt is composed of unsteady and advective parts.

• ∂F/∂t is the unsteady part, it is the local temporal rate of change of F at the location x. It is zero
when F is independent of time.

• u · ∇F is the advective (or convective) part, it is the rate of change of F that occurs as fluid particles
move from one location to another. It is zero where F is spatially uniform, the fluid is not moving, or
u and ∇F are perpendicular.

The total acceleration is given by:
Du

Dt
=
∂u

∂t
+ (u · ∇)u (3.8)

With ∂u/∂t the local acceleration and (u · ∇)u the advective acceleration.

3.3 Flow Lines, Fluid Acceleration, and Galilean Transformation

Streamlines, path lines and streak lines are curves that are used to describe fluid motion. When the flow is
steady these curves are all the same.

3.3.1 Streamlines

A streamline is a curve that is instantaneously tangent to the fluid velocity throughout the domain. The
tangency requirement on the arc length ds = (dx, dy, dz) and velocity u = (u, v, w) leads to

dx

u
=
dy

v
=
dz

w
(3.9)

which needs to be integrated upstream and downstream from a reference point.

When the reference points for calculating the streamlines from the velocity profile u lie on a closed curve
C, the resulting stream surface is called a stream tube. No fluid crosses a stream tube’s surface since all
velocity vectors are tangent to the surface.

3.3.2 Path Lines

A path line is the trajectory of a fluid particle of fixed identity:

x = r (t; r0, t0) (3.10)

The equation for the path line of a particle that was at location ro at time to can be obtained from u by
integrating

dr/dt = u(r, t) (3.11)

subject to r (to) = r0.

Experimentally, path lines can be obtained by adding small particles to the fluid and tracking their location
in time.
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3.4 Strain and Rotation Rates Summary by Ellis de Wit

3.3.3 Streak Lines

A streak line is a curve obtained by connecting all the fluid particles that have passed through a fixed point
in space. Streak lines may be visualized in experiments by injecting a passive marker, like dye or smoke,
from a small port.

The streak line through the point x0 at time t is found by integrating (3.11) for all relevant reference
times, t0, subject to the requirement r (t0) = x0. When completed, this integration provides a path line,
x = r (t;x0, t0), for each value of to.

3.4 Strain and Rotation Rates

The basic constitutive law for fluids relates fluid element deformation rates to the stresses (surface forces
per unit area) applied to a fluid element.

A three-dimensional first-order Taylor expansion of u about x leads to the velocity-gradient tensor:

dui = (∂ui/∂xj) dxj (3.12)

This can be decomposed into:
∂ui
∂xj

= Sij +
1

2
Rij (3.13)

with the strain rate tensor:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.14)

and the rotation tensor

Rij =
∂ui
∂xj

− ∂uj
∂xi

(3.15)

3.4.1 The Strain Rate Tensor

The strain rate tensor is given by:

[Sij ] =

 ∂u1

∂x1

1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
1
2

(
∂u1

∂x2
+ ∂u2

∂x1

)
∂u2

∂x2

 (3.16)

The diagonal terms of the strain rate tensor, S11 and S22 represent elongation and contraction per unit
length along the coordinate directions (“linear strain rates”).

The off-diagonal terms of the strain rate tensor S12 = S21 represent shear deformations that change the
relative orientations of line segments, that were initially parallel to the coordinate directions.
Thus, the off-diagonal terms of Sij represent the average rate at which material line segments initially parallel
to the i- and j-directions rotate toward each other.

3.4.2 The Rotation Tensor

The rotation tensor, Rij is antisymmetric so its diagonal elements are zero and its off-diagonal elements are
equal and opposite. In 2D it is given by:

[Rij ] =

[
0 ∂u1

∂x2
− ∂u2

∂x1
∂u2

∂x1
− ∂u1

∂x2
0

]
(3.17)

In 3D its three independent elements can be put in correspondence with a vector. This vector is the vorticity,
ω = ∇× u, and the correspondence is:
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3.6 Reynolds Transport Theorem Summary by Ellis de Wit

Rij = −εijkωk =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


2D

where

ω1 =
∂u3
∂x2

− ∂u2
∂x3

, ω2 =
∂u1
∂x3

− ∂u3
∂x1

, and ω3 =
∂u2
∂x1

− ∂u1
∂x2

(3.18)

Fluid motion is called irrotational if

ω = 0, or, equivalently, Rij =
∂ui
∂xj

− ∂uj
∂xi

= 0 (3.19)

3.6 Reynolds Transport Theorem

Consider a moving volume V ∗(t) (called ‘control volume’), having a closed surface A∗(t) with outward normal
n and let b denote the local velocity of A∗.

The time derivative of the integral of a continuous function F (x, t) over this volume V ∗(t) is given by
Reynolds transport theorem:

d

dt

∫
V ∗(t)

F (x, t)dV =

∫
V ∗(t)

∂F (x, t)

∂t
dV +

∫
A∗(t)

F (x, t)b · ndA. (3.20)

This theorem is the basis to develop the integral and differential versions of the conservation laws of fluid
motion.
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Summary by Ellis de Wit

Chapter 4. Conservation Laws

4.2 Conservation of Mass

4.2.1 Integral Form

A statement of conservation of mass for a material volume in a flowing fluid is:

d

dt

∫
V (t)

ρ(x, t)dV = 0 (4.1)

where ρ is the fluid density and V (t) is a material volume, which moves and deforms with the fluid flow
so that it always contains the same mass.

From this follows the integral mass balance for a material volume V (t):

d

dt

∫
V (t)

ρ(x, t)dV =

∫
V (t)

∂ρ(x, t)

∂t
dV +

∫
A(t)

ρ(x, t)u(x, t) · ndA = 0 (4.2)

And the integral mass balance for an arbitrary control volume V ∗(t) having velocity b:

d

dt

∫
V ∗(t)

ρ(x, t)dV +

∫
A∗(t)

ρ(x, t)(u(x, t)− b) · ndA = 0 (4.3)

Substituting b = u in Eq. (4.3) retrieves Eq. (4.2). A fixed control volume corresponds to b = 0.

4.2.2 Differential Form

The continuity equation expresses the principle of conservation of mass in differential form, this is given
by:

∂ρ(x, t)

∂t
+∇ · (ρ(x, t)u(x, t)) = 0 or, in index notation:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (4.4)

Two special cases of the continuity equation are:

1. Steady, compressible flow
∇ · (ρ(x, t)u(x, t)) = 0 (4.5)

2. Incompressible flow (both steady and unsteady)

∇ · u = 0 (4.6)

Note that Eq. (4.6) corresponds to setting the volumetric strain rate to be equal to zero.
A fluid is usually called incompressible when its density ρ does not change with pressure.

4.4 Conservation of Momentum

4.4.1 Integral Form

When applied to a material volume V (t) with surface area A(t), Newton’s second law gives the momentum
conservation which can be stated directly as:

d

dt

∫
V (t)

ρ(x, t)u(x, t)dV =

∫
V (t)

ρ(x, t)gdV +

∫
A(t)

f(n,x, t)dA, (4.7)

where ρu is the momentum per unit volume of the flowing fluid, g is the body force per unit mass acting on
the fluid within V (t), f is the surface force per unit area acting on A(t).
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4.4 Conservation of Momentum Summary by Ellis de Wit

From this follows the integral momentum balance for a material volume V (t):∫
V (t)

∂

∂t
(ρ(x, t)u(x, t))dV +

∫
A(t)

ρ(x, t)u(x, t)(u(x, t) · n)dA

=

∫
V (t)

ρ(x, t)gdV +

∫
A(t)

f(n,x, t)dA

(4.8)

And the integral momentum balance for an arbitrary control volume V ∗(t) having velocity b:

d

dt

∫
V ∗(t)

ρ(x, t)u(x, t)dV +

∫
A∗(t)

ρ(x, t)u(x, t)(u(x, t)− b) · ndA

=

∫
V ∗(t)

ρ(x, t)gdV +

∫
A∗(t)

f(n,x, t)dA

(4.9)

The body force, ρgdV , acts on the fluid element dV without physical contact. Body forces commonly arise
from gravitational, magnetic, electrostatic, or electromagnetic force fields (or fictitious body forces due to
non-inertial motion).
Body forces may be conservative or nonconservative. Conservative body forces are those that can be expressed
as the gradient of a potential function:

g = −∇Φ or gj = −∂Φ/∂xj (4.10)

where Φ is called the force potential ; it has units of energy per unit mass.

Surface forces, f , act on fluid elements through direct contact with the surface of the element. They are
proportional to the contact area and carry units of stress (force per unit area).

4.4.2 Bernoulli Equation

Using a stream-tube control volume of differential length ds for a steady, inviscid, constant density flow
where U is the local flow speed, the Bernoulli equation can be found.

U2/2 + gz + p/ρ = a constant along a streamline. (4.11)

Or the unintegrated versions:

U
∂U

∂s
ds = −gdz − 1

ρ

∂p

∂s
ds, or

[
d
(
U2/2

)
+ gdz + (1/ρ)dp = 0

]
along a streamline

(4.12)

The Bernoulli equation can also be written in units of length:

p

γ
+
V 2

2g
+ z = constant on a streamline = H (4.13)

With:

• p/γ = p/ρg: Pressure head, the column height to reach p

• V 2/2g: Velocity head, the vertical drop distance from rest to reach V (in absence of friction)

• z: Elevation head, the potential energy

• H: Total head

4.4.3 Differential Form

Cauchy’s equation of motion expresses the principle of conservation of momentum in differential form,
this is given by:

ρ
Duj
Dt

= ρgj +
∂

∂xi
(τij) (4.14)
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4.5 Constitutive Equation for a Newtonian Fluid Summary by Ellis de Wit

(4.14) relates fluid-particle acceleration to the net body (ρgj) and surface ∂τij∂xi forces on the particle. It
is true in any continuum, solid or fluid, no matter how the stress tensor τij is related to the velocity field.
However, (4.14) does not provide a complete description of fluid dynamics, even when combined with (4.4)
because the number of dependent field variables is greater than the number of equations (13 unknowns vs 6
equations).

4.5 Constitutive Equation for a Newtonian Fluid

The stress tensor is given by:

τ =

 τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ32 τ33

 (4.15)

The diagonal elements are the normal stresses, and the off-diagonal elements are the tangential or shear
stresses. Considering the torque produced by these stresses, it can be shown that the stress tensor is
symmetric,

τij = τji (4.16)

then the number of independent stress components reduces from 9 to 6.

In a fluid at rest, the stress is isotropic:
τij = −pδij (4.17)

where p is the thermodynamic pressure related to ρ and T by an equation of state such as that for a perfect
gas p = ρRT .

A moving fluid develops fluid-dynamic contributions to the stress tensor, called the deviatoric stresses due
to viscosity, so that

τij = −pδij + σij . (4.18)

Deviatoric stress only develops in fluid elements that change shape, so only the symmetric part of the velocity
gradient tensor (Sij) should enter.
The most general linear relation between σij and Smn can be written as:

σij = KijmnSmn (4.19)

where Kijmn is a 4th-order tensor which has 81 components.
When the fluid is isotropic the stress-strain rate relationship is independent of the orientation of the coor-
dinate system and the Kijmn becomes:

Kijmn = λδijδmn + 2µδimδjn (4.20)

Then the stress becomes:
τij = −pδij + 2µSij + λSmmδij (4.21)

By setting i = j this can be solved for the pressure:

p− p̄ =

(
2

3
µ+ λ

)
∇ · u p̄ ≡ −1

3
τii (4.22)

with the coefficient of bulk viscosity defined as: µv = λ+ 2µ/3.

Additionally, a general equation for an isotropic compressible, Newtonian fluid can be found:

τij = −pδij + 2µ

(
Sij −

1

3
Smmδij

)
+ µvSmmδij (4.23)

And for an incompressible fluid, the stress is:

τij = −pδij + 2µSij (4.24)

This linear relation between τ and S is consistent with Newton’s definition of the viscosity coefficient µ in a
simple parallel flow u(y).
For non-Newtonian fluids, shear stress and shear strain rate are not linearly related. Then, viscosity can be
defined as the instantaneous slope of the shear stress/shear strain rate curve.
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4.6 Navier-Stokes Momentum Equation Summary by Ellis de Wit

4.6 Navier-Stokes Momentum Equation

Substituting the general isotropic Newtonian constitutive equation (4.23) into Cauchy’s equation (4.14) yields
the Navier-Stokes momentum equation:

ρ
Duj
Dt

= − ∂p

∂xj
+ ρgj +

∂

∂xi

[
µ

(
∂uj
∂xi

+
∂ui
∂xj

)
+

(
µv −

2

3
µ

)
∂um
∂xm

δij

]
(4.25)

with the viscosities µ and µv only depending on the thermodynamic state.

Together with the continuity equation, there are now have 4 equations for 5 unknowns (ρ, ui and p). For
constant ρ (incompressible fluids) or when ρ = ρ(p) is known, we have a complete description of fluid
dynamics.

For incompressible fluids and uniform µ the fluid dynamics equations reduce to the incompressible Navier-
Stokes equation

ρ
Du

Dt
= −∇p+ ρg + µ∇2u (4.26)

When viscous effects are negligible, the Navier-Stokes equation simplifies into the Euler equation:

ρ
Du

Dt
= −∇p+ ρg (4.27)

4.8 Conservation of Energy

When the fluid is compressible and when the relationship between ρ and p also includes T , the internal
energy e needs to be considered. Then, also conservation of energy is needed to obtain a full description of
fluid motion.

4.8.1 Integral Form

When applied to a material volume V (t) with surface area A(t), the conservation of internal energy for a
single-component fluid can be stated:

d

dt

∫
V (t)

ρ

(
e+

1

2
|u|2

)
dV =

∫
V (t)

ρg · udV +

∫
A(t)

f · udA−
∫
A(t)

q · ndA (4.28)

where the terms on the right are:

• work done on the fluid in V (t) by body forces (g),

• work done on the fluid in V (t) by surface forces (f),

• heat transferred out of V (t) (with q the heat flux).

This can be generalized to an arbitrarily moving control volume V ∗(t) with surface A∗(t):

d

dt

∫
V ∗(t)

ρ

(
e+

1

2
|u|2

)
dV +

∫
A∗(t)

(
ρe+

ρ

2
|u|2

)
(u− b) · ndA

=

∫
V ∗(t)

ρg · udV +

∫
A∗(t)

f · udA−
∫
A∗(t)

q · ndA,
(4.29)

4.8.2 Differential Form

The differential statement of energy conservation is given by:

De

Dt
= −pDv

Dt
+

1

ρ
σijSij −

1

ρ

∂qi
∂xi

(4.30)

Here, v = 1/ρ.
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4.9 Special Forms of the Equations Summary by Ellis de Wit

4.8.3 A Full Description

Assuming that the fluid is Newtonian and follows Fourier’s law of heat conduction (q = −k∇T ) yields the
differential energy balance as

ρ
De

Dt
= −p∂um

∂xm
+ 2µ

(
Sij −

1

3

∂um
∂xm

δij

)2

+ µv

(
∂um
∂xm

)2

+
∂

∂xi

(
k
∂T

∂xi

)
(4.31)

which, together with the continuity equation, the Navier-Stokes momentum equation and two thermodynamic
equations of state

p = p(v, T ), e = e(p, T ) (4.32)

provide a full description of fluid motion for a Newtonian fluid which follows Fourier’s law of heat conduction.

4.9 Special Forms of the Equations

4.9.1 Applications of Bernoulli equations

Pitot tube. Consider first a simple device to measure the local velocity in a fluid stream by inserting a
narrow bent tube, called a pitot tube. Consider two points (1 and 2) at the same level, point 1 being away
from the tube and point 2 being immediately in front of the open end where the fluid velocity u2 is zero. If
the flow is steady and irrotational with constant density along the streamline that connects 1 and 2, then
(4.11) gives:

p1
ρ

+
1

2
|u1|2 =

p2
ρ

+
1

2
|u2|2 =

p2
ρ

(4.33)

from which the magnitude of u1 is found to be:

|u1| =
√
2 (p2 − p1) /ρ. (4.34)

Pressures at the two points are found from the hydrostatic balance:

p1 = ρgh1 and p2 = ρgh2, (4.35)

so that the magnitude of u1 can be found from:

|u1| =
√
2g (h2 − h1). (4.36)

The pressure p2 measured by a pitot tube is called stagnation pressure or total pressure, which is larger than
the local static pressure.

Free jet. As another application of Bernoulli’s equation, consider the flow through an orifice or opening
in a tank. The flow is slightly unsteady due to the lowering of the water level in the tank, but this effect is
small if the tank area is large compared to the orifice area. Viscous effects are negligible everywhere away
from the walls of the tank. All streamlines can be traced back to the free surface in the tank, where they
have the same value of the Bernoulli constant B = |u|2/2+ p/ρ+ gz. It follows that the flow is irrotational,
and B is constant throughout the flow.

Application of the Bernoulli equation (4.11) for steady constant-density flow between a point on the free
surface in the tank and a point in the jet:

patm
ρ

+ gh =
patm
ρ

+
u2

2
,

from which the average jet velocity magnitude u is found as:

u =
√
2gh

which simply states that the loss of potential energy equals the gain of kinetic energy.

The mass flow rate in the jet is approximately: ṁ = ρAcu = ρAc
√
2gh, where Ac is the area of the jet. For

orifices having a sharp edge, Ac has been found to be ≈ 62% of the orifice area because the jet contracts
downstream of the orifice opening.
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4.10 Boundary Conditions Summary by Ellis de Wit

4.10 Boundary Conditions

Applying the integral form of mass conservation to a small cylindrical control volume with thickness l specifies
ρ1u1 · n = ρ2u2 · n between fluids 1 and 2.
When medium 2 is a solid we get

u1 · n = 0 (4.37)

on the boundary. Applying the integral form of momentum conservation to the control volume specifies that
the tractions

niτij , (4.38)

are continuous. Finally, energy conservation specifies that the heat flux

niqi (4.39)

must be continuous across the interface. These equations have to be supplemented with zero temperature
jump T1 = T2 and with the no-slip condition when medium 2 is a solid:

u1 · t = 0 (4.40)

4.11 Dimensionless Forms of the Equations and Dynamic Similarity

The dimensionless parameters for any particular problem can be determined in two ways.

1. From the system parameters (e.g. using Buckingham Π-theorem), if e.g. the differential equations are
not known,

2. Directly from the governing differential equations.

Defining dimensionless variables allows for rendering the governing differential equations dimensionless:

x∗i = xi/l, t∗ = Ωt, u∗j = uj/U, p∗ = (p− p∞) /ρU2, and g∗j = gj/g, (4.41)

Depending on the nature of the flow, p−p∞ could be made dimensionless with a generic viscous stress µU/l,
a hydrostatic pressure ρgl, or a dynamic pressure ρU2.

Using these dimensionless variables, the incompressible Navier-Stokes equation (4.26) becomes:[
Ωl

U

]
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇∗p∗ +

[
gl

U2

]
g∗ +

[
µ

ρUl

]
∇∗2u∗ (4.42)

where ∇∗ = l∇.

The parameter groupings shown in [,]-brackets have the following names and interpretations:

St = Strouhal number ≡ unsteady acceleration

advective acceleration
∝ ∂u/∂t

u(∂u/∂x)
∝ ΩU

U2/l
=

Ωl

U
, (4.43)

Re = Reynolds number ≡ inertia force

viscous force
∝ ρu(∂u/∂x)

µ (∂2u/∂x2)
∝ ρU2/l

µU/l2
=
ρUl

µ
, and (4.44)

Fr = Froude number ≡
[

inertia force

gravity force

]1/2
∝

[
ρu(∂u/∂x)

ρg

]1/2
∝

[
ρU2/l

ρg

]1/2
=

U√
gl
. (4.45)

It follows that in dynamically similar flows, dimensionless flow variables are identical at corresponding points
and times (that is, for identical values of x/1, and Ωt):

p(x, t)− p∞
1
2ρU

2
≡ Cp = Ψ

(
St,Fr,Re;

x

l′
,Ωt

)
, (4.46)

with Cp defined as the pressure coefficient (or Euler number) and Ψ is the dimensionless solution.

All dimensionless quantities are identical in dynamically similar flows. For flow around an immersed body,
like a sphere, we can define the (dimensionless) drag and lift coefficients:

CD ≡ FD
1
2ρU

2A
and CL ≡ FL

1
2ρU

2A
(4.47)
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Summary by Ellis de Wit

Chapter 7. Ideal Flow

7.1 Relevance of Irrotational Constant-Density Flow Theory

For incompressible fluids (and constant µ), the fluid dynamics equations that are provided by the incom-
pressible Navier-Stokes and the continuity equations reduce to

∇ · u = 0 and ρ(Du/Dt) = −∇p (7.1)

These are the equations of ideal flow.

7.1.1 Bernoulli Equation for Ideal Flow

The Bernoulli equation for ideal flow is derived from (7.1) and is given by:

ρ
∂u

∂t
+∇

(
1

2
ρ|u|2 + p

)
= 0 (7.2)

Two simplifications for this equation can be made. First, when the flow is steady, the first term drops and
we can write:

1

2
ρ|u|2 + p = constant. (7.3)

The big difference between the earlier Bernoulli equation is that now we require the flow to be irrotational,
which causes the constant to be the same throughout the flow (so not only along a streamline).

Second, when the flow is unsteady, we write the velocity as the gradient of a scalar potential ϕ (called the
velocity potential):

u ≡ ∇ϕ (7.4)

Then the Bernoulli equations can be written as:

∂ϕ

∂t
+

1

2
|∇ϕ|2 + p

ρ
= constant. (7.5)

This is the unsteady Bernoulli equation for incompressible, irrotational flow, where, again, the constant is
equal throughout the entire flow.
An important consequence is that if the flow is irrotational in a certain region, it remains irrotational
throughout the flow as long as viscous effects are negligible.

7.1.2 Application of Ideal Flow Theory

Ideal flow theory has abundant applications in the exterior aero- and hydrodynamics of moderate- to large-
scale objects at non-trivial subsonic speeds. Here, moderate size (L) and non-trivial speed (U) are determined
jointly by the requirement that the Reynolds number, Re = ρUl/µ, be large enough (typically Re ∼ 103

or greater) so that the combined influence of fluid viscosity and fluid element rotation is confined to thin
layers on solid surfaces, commonly known as boundary layers or fluid particle accelerations caused by fluid
inertia ∼ U2/L are much larger than those caused by viscosity ∼ µU/ρL2.

Because (7.1) involves only first-order spatial derivatives, ideal flows only satisfy the no-through-flow bound-
ary condition on solid surfaces. The no-slip boundary condition is not applied in ideal flows, so non-zero
tangential velocity at a solid surface may exist. As a consequence of the fact that ideal flow cannot predict
viscous effects such as skin friction, it cannot be applied to the interior flow in pipes and ducts (thus only
to the exterior of objects).

At sufficiently high Re, there are two primary differences between ideal and real flows over the same object.

1. Viscous boundary layers containing rotational fluid develop on solid surfaces in the real flow, and the
thickness of such boundary layers, within which viscous diffusion of vorticity is important, approaches
zero as Re → ∞.
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7.2 Two-Dimensional Stream Function and Velocity Potential Summary by Ellis de Wit

2. The possible formation in the real flow of separated flow or wake regions that occur when boundary
layers leave the surface on which they have developed to create a wider zone of rotational flow.

7.2 Two-Dimensional Stream Function and Velocity Potential

The two-dimensional incompressible continuity equation:

∂u/∂x+ ∂v/∂y = 0 (7.6)

is identically satisfied when u, v-velocity components are determined from a single scalar function ψ:

u ≡ ∂ψ/∂y, and v ≡ −∂ψ/∂x (7.7)

The function ψ(x, y) is the stream function in two dimensions. Along a curve of ψ = constant, dψ = 0,
and this implies:

0 = dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = −vdx+ udy, or

(
dy

dx

)
ψ= const

=
v

u′
(7.8)

which is the definition of a streamline in two dimensions. From the vorticity ωz of a flow in 2D we know
that:

∂v

∂x
− ∂u

∂y
= ωz =

∂

∂x

(
−∂ψ
∂x

)
− ∂

∂y

(
∂ψ

∂y

)
= −∇2ψ = 0 (7.9)

Alternatively, the condition of irrotationality in two dimensions is:

∂v/∂x− ∂u/∂y = 0 (7.10)

and it is identically satisfied when u, v-velocity components are determined from a single scalar function ϕ:

u ≡ ∂ϕ/∂x, and v ≡ ∂ϕ/∂y (7.11)

The function f(x,y) is known as the velocity potential in two dimensions because ∇ϕ = u. In fact, a
velocity potential must exist in all irrotational flows, so such flows are frequently called potential flows.
Curves of ϕ = constant are defined by:

0 = dϕ =
∂ϕ

∂x
dx+

∂ϕ

∂y
dy = udx+ vdy or

(
dy

dx

)
ϕ= const

= −u
v

(7.12)

which are equipotential lines that are perpendicular to the streamlines. The condition of incompressibility
now becomes:

∂u

∂x
+
∂v

∂y
=

∂

∂x

(
∂ϕ

∂x

)
+

∂

∂y

(
∂

∂y

)
ϕ = ∇2ϕ = 0 (7.13)

7.2.1 Boundary Conditions

The boundary conditions normally encountered in irrotational flows are as follows.

1. No flow through a stationary solid surface:

(n · u)on the surface = 0 (7.14)

which implies
n · ∇ϕ = ∂ϕ/∂n = 0 or ∂ψ/∂s = 0 on the surface, (7.15)

where s is the arc length along the surface, and n is the surface-normal coordinate. However, ∂ψ/∂s
is also zero along a streamline. Thus, a stationary solid boundary in an ideal flow must also be a
streamline.
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7.3 Construction of Elementary Flows in Two Dimensions Summary by Ellis de Wit

2. Recovery of conditions at infinity. For the typical case of a body immersed in a uniform fluid flowing
in the x direction with speed U , the condition far from the body is

∂ϕ/∂x = U, or ∂ψ/∂y = U (7.16)

7.2.2 Laplace and Bernoulli

A solution to the Laplace equations has been obtained:

∇2ψ = 0 or ∇2ϕ = 0 (7.17)

the velocity components are determined by

u ≡ ∂ψ/∂y, and v ≡ −∂ψ/∂x, or u ≡ ∂ϕ/∂x, and v ≡ ∂ϕ/∂y (7.18)

Then, the conservation of mass and momentum equations

∇ · u = 0 and ρ
∂u

∂t
+∇

(
1

2
ρ|u|2 + p

)
= 0 (7.19)

are satisfied. For steady flow, the pressures follow from the Bernoulli equation:

p+
1

2
ρ|u|2 = p+

1

2
ρ
(
u2 + v2

)
= p+

1

2
ρ|∇ϕ|2 = p+

1

2
ρ|∇ψ|2 = const. (7.20)

For unsteady flow, the term ∂ϕ/∂t must be added.

7.3 Construction of Elementary Flows in Two Dimensions

7.3.1 Uniform flow

In an unbounded domain, the most elementary solutions of ∇2ψ = 0 and ∇2ϕ = 0 are first-order polynomials
for the stream function ψ and velocity potential ϕ:

ψ = −V x+ Uy, and ϕ = Ux+ V y (7.21)

These correspond to uniform fluid velocity with horizontal component U and vertical component V .
Uniform flow at an angle α is given by:

ψ = U(y cosα− x sinα)

ϕ = U(x cosα+ y sinα)
(7.22)

7.3.2 Corner Flow

Ideal flow in a corner is given by second-order polynomials. For the stream function, this gives:

ψ = 2Axy −→ u = 2Ax, and v = −2Ay (7.23)

for A > 0, the flow is toward the origin along the y-axis, and away from it along the x-axis. The streamlines
(ψ = constant) are hyperbolae given by:

xy = ψ/2A (7.24)

Considering the first quadrant only, this is the ideal flow in a 90◦ corner.

Considering the velocity potential yields:

ϕ = 2Axy −→ u = 2Ay, and v = 2Ax (7.25)

The equipotential lines (ϕ = constant) are hyperbolae given by:

xy = ϕ/2A (7.26)
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7.3 Construction of Elementary Flows in Two Dimensions Summary by Ellis de Wit

The flow is away from the origin along the line y = x and toward it along the line y = −x. Thus, ϕ = 2Axy
produces a flow that is equivalent to that of ψ = 2Axy after a 45◦ rotation. Higher-order polynomial solutions
lead to flows in smaller-angle corners, while fractional powers lead to flows in larger-angle corners.

In polar form, the results can be generalized to describe flow in the vicinity of a corner of angle α with the
equation

ψ = Arπ/α sin
πθ

α
(7.27)

7.3.3 Ideal Irrotational Flow

Other than uniform flow, the most elementary solution of ∇2ψ = 0 in an unbounded domain is:

ψ = − Γ

2π
ln

√
(x− x′)

2
+ (y − y′)

2
(7.28)

Which represents the flow induced by an irrotational vortex of strength Γ located at x′ = (x′, y′).

For x′ = y′ = 0 the velocities can be written as

u =
∂

∂y

(
− Γ

2π
ln
√
x2 + y2

)
= − Γ

2π

y

x2 + y2
= − Γ

2πr
sin θ, and

v = − ∂

∂x

(
− Γ

2π
ln
√
x2 + y2

)
= +

Γ

2π

x

x2 + y2
=

Γ

2πr
cos θ

(7.29)

where r and θ are polar coordinates, related to x and y by x = r cos θ, y = r sin θ. With

ur = 0 and uθ = Γ/2πr, (7.30)

which is the flow field of an ideal irrotational vortex.

The streamlines of an irrotational vortex are circles and the equipotential lines are radials from the origin.

7.3.4 Point Source

Other than uniform flow, the most elementary solution of ∇2ϕ = 0 in an unbounded domain is:

ϕ =
qs
2π

ln

√
(x− x′)

2
+ (y − y′)

2
(7.31)

Which represents the flow induced by an ideal point source of strength qs located at x′ = (x′, y′). Here, qs
is the source’s volume flow rate per unit length perpendicular to the plane of the flow.
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For x′ = y′ = 0 the velocities can be written as

u =
∂

∂x

( qs
2π

ln
√
x2 + y2

)
=
qs
2π

x

x2 + y2
=

qs
2πr

cos θ, and

v =
∂

∂y

( qs
2π

ln
√
x2 + y2

)
=
qs
2π

y

x2 + y2
=

qs
2πr

sin θ.

(7.32)

These results may be written instead in polar coordinates as:

ur = qs/2πr and uθ = 0, (7.33)

from which it directly follows that the divergence is zero:

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0 (7.34)

The equipotential lines of an ideal point source are circles and the streamlines are radials from the origin.
Thus, this potential represents the flow from an ideal incompressible point source for qs > 0, or sink for
qs < 0, that is located at r = 0 in two dimensions.

7.3.5 Doublet (a Source and a Sink)

A source of strength +qs at (−ε, 0) and sink of strength −qs at (+ε, 0), can be considered together

ϕ =
qs
2π

ln
√
(x+ ε)2 + y2 − qs

2π
ln

√
(x− ε)2 + y2 (7.35)

to obtain the potential for a doublet in the limit that ε→ 0 and qs → ∞, so that the dipole strength vector:

d =
∑

sources

xiqs,i = −εexqs + εex (−qs) = −2qsεex (7.36)

remains constant. Here, the dipole strength points from the sink toward the source. In the limit ε→ 0 and
qs → ∞ the velocity potential can be written in terms of the dipole vector d:

lim
ε→0

lim
qs→∞

ϕ ∼=
qsε

π

x

r2
= −d · x

2πr2
=

|d|
2π

cos θ

r
(7.37)

The stream function of a doublet can similarly be derived, resulting in

lim
ε→0

lim
qs→∞

ψ ∼= −qsε
π

y

r2
= −|d|

2π

sin θ

r
(7.38)
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7.4 Superposition of Elementary Flows

The most common and useful superposition of these solutions involves combining a uniform stream parallel
to the x-axis, ψ = Uy or ϕ = Ux, and one or more of the singular solutions.

7.4.1 Uniform Flow + Point Source

The simplest example is the combination of a source and a uniform stream, which can be written in Cartesian
and polar coordinates as:

ϕ = Ux+
qs
2π

ln
√
x2 + y2 = Ur cos θ +

qs
2π

ln r, or

ψ = Uy +
qs
2π

tan−1
(y
x

)
= Ur sin θ +

qs
2π
θ.

(7.39)

Here the velocity field components are:

u = U +
qs
2π

x

x2 + y2
and v =

qs
2π

y

x2 + y2
(7.40)

The stagnation point (u = 0) is located at x = −a = −qs/2πU , and y = 0, and the value of the stream
function on the stagnation streamline (θ = π, r = a) is ψ = qs/2.
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The streamlines that emerge vertically from the stagnation point form a semi-infinite body with a smooth
nose, generally called a half-body. These stagnation streamlines divide the field into regions external and
internal to the half body. The internal flow consists entirely of fluid emanating from the source, and the
external region contains fluid from upstream of the source. The half-width of the body, h, can be found from
(7.39) with ψ = qs/2:

h = qs(π − θ)/2πU (7.41)

Far downstream (θ → 0), the half-width tends to hmax = qs/2U .

The pressure distribution can be found from the Bernoulli equation:

1

2
ρ|u|2 + p = p∞ + ρU2/2 −→ Cp =

p− p∞
1
2ρU

2
= 1− |u|2

U2
(7.42)

Here, Cp is the Euler number or pressure coefficient, a dimensionless excess pressure.

7.4.2 Uniform Flow + Doublet

A second example of flow construction via superposition is a horizontal free stream U and a doublet with
strength d = −2πUa2ex:

ϕ = Ux+
Ua2x

x2 + y2
= U

(
r +

a2

r

)
cos θ, or ψ = Uy − Ua2y

x2 + y2
= U

(
r − a2

r

)
sin θ (7.43)

The velocity field is:

ur = U

(
1− a2

r2

)
cos θ, and uθ = −U

(
1 +

a2

r2

)
sin θ (7.44)

Here, ψ = 0 at r = a for all values of θ, showing that the streamline ψ = 0 represents a circular cylinder
of radius a. The velocity components on the surface of the cylinder are ur = 0 and uθ = −2U sin θ, so the
cylinder-surface pressure coefficient is:

Cp(r = a, θ) = 1− 4 sin2 θ (7.45)

This flow has two stagnation points at at r − θ coordinates, (a, 0) and (a, π). The cylinder-surface pressure
minima occur at r − θ coordinates (a,±π/2) where the surface flow speed is maximum.

d’Alembert’s Paradox. The symmetry of the pressure distribution implies that there is no net pressure
force on the cylinder. In fact, a general result of the two-dimensional ideal flow theory is that a steadily
moving body experiences no drag. This result is at variance with observations and is sometimes referred to
as d’Alembert’s paradox. In real flows, there are two differences with ideal flow related to drag:
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1. In real flows tangential viscous stresses develop on the solid surface, commonly known as skin friction,
causing viscous drag forces.

2. However, most of the drag often comes from flow separation and the formation of a wake. When a
wake is present, the flow loses ‘fore-aft‘ symmetry and the surface pressure on the downstream side of
the object is smaller than that predicted by ideal flow theory, resulting in pressure drag.

7.4.3 Uniform Flow + Doublet + Irrotational Vortex

Although there is no net drag force on a circular cylinder in steady irrotational flow, there may be a lateral
or lift force perpendicular to the free stream when circulation is added. Consider the flow field (7.43) with
the addition of a point vortex of circulation −Γ at the origin that induces a clockwise velocity:

ψ = U

(
r − a2

r

)
sin θ +

Γ

2π
ln
( r
a

)
(7.46)

The tangential velocity component at any point in the flow is:

uθ = −∂ψ
∂r

= −U
(
1 +

a2

r2

)
sin θ − Γ

2πr
(7.47)

At the surface of the cylinder (r = a), the fluid velocity is entirely tangential and is given by

uθ(r = a, θ) = −2U sin θ − Γ/2πa (7.48)

which vanishes if:
sin θ = −Γ/4πaU (7.49)

For Γ < 4πaU , two values of θ satisfy (7.49), implying that there are two stagnation points on the cylinder’s
surface. The stagnation points progressively move down as Γ increases and coalesce when Γ = 4πaU . For
Γ > 4πaU , the stagnation point moves out into the flow along the negative y-axis.

The cylinder surface pressure is found by substituting the velocities at the surface of the cylinder into the
Bernoulli equations, which gives:

p(r = a, θ) = p∞ +
1

2
ρ

[
U2 −

(
−2U sin θ − Γ

2πa

)2
]

(7.50)
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The upstream-downstream symmetry of the flow implies that the pressure force on the cylinder has no
stream-wise component (d’Alembert’s paradox). The lateral pressure force (per unit length perpendicular
to the flow plane) is

L = −
∫ 2π

0

p(r = a, θ)ndl · ey = −
∫ 2π

0

p(r = a, θ) sin θadθ, (7.51)

where n = er is the outward normal from the cylinder, and dl = adθ is a surface element of the cylinder’s
cross-section; L is known as the lift force in aerodynamics. Evaluating the integral using the previously
found pressure produces the Kutta-Zhukhovsky lift theorem:

L = ρUΓ (7.52)

This result is valid for irrotational flow around any two-dimensional object; not just for circular cross-sections.
The result that the upward lift force L is proportional to the clockwise circulation Γ is of fundamental
importance in aerodynamics. It turns out that the magnitude of circulation around an airfoil (cross-section
of an aeroplane wing) in a flow depends on the flow speed U , and the shape and orientation of the airfoil.
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Summary by Ellis de Wit

Chapter 9. Laminar Flow

9.1 Introduction

For low values of the Reynolds number, the entire flow may be influenced by viscosity, and the inviscid flow
theory is no longer even approximately correct.
Viscous flows generically fall into two categories, laminar and turbulent, but the boundary between them is
imperfectly defined. At low flow rates, fluids move in parallel layers (laminae) with no unsteady macroscopic
mixing or overturning motion of the layers. Such smooth orderly flow is called laminar. However, if the flow
rate was increased beyond a certain critical value, fluids show the presence of unsteady, apparently chaotic
three-dimensional macroscopic mixing motions. Such irregular disorderly flow is called turbulent.
The transition from laminar to turbulent flow always occurs at or near a fixed value of the Reynolds number,
Re = Ud/ν ∼ 2000 to 3000 where U is the velocity averaged over the tube’s cross-section, d is the tube
diameter, and ν = µ/ρ is the kinematic viscosity.

Starting point for laminar flows in which viscous effects are important throughout the flow are the constant-
density, constant-viscosity Navier Stokes momentum equations

Du/Dt = −(1/ρ)∇p+ ν∇2u (9.1)

and the continuity equation
∇ · u = 0 (9.2)

The velocity boundary conditions on a solid surface are:

n · us = (n · u)on the surface and t · us = (t · u)on the surface , (9.3)

where us is the velocity of the surface, n is the normal to the surface, and t is the tangent to the surface in
the plane of interest. Here fluid density will be assumed constant, and the frame of reference will be inertial.
Thus, gravity can be dropped from the momentum equation as long as no free surface is present. However,
when free surfaces are present, density will vary near the surface and the gravitational body force should
reappear in the Navier-Stokes equation.

9.2 Exact Solutions for Steady Incompressible Viscous Flow

Because of the presence of the nonlinear acceleration term u · ∇u in the total derivative in (9.1), very few
exact solutions of the Navier-Stokes equations are known in closed form. An example of an exact solution is
for steady laminar flow between infinite parallel plates. Within the entrance length, the derivative ∂u/∂x is
not zero so the continuity equation ∂u/∂x+ ∂v/∂y = 0 requires that v ̸= 0, so that the flow is not parallel
to the walls within the entrance length. Such a flow is said to be fully developed when its velocity profile
u(x, y) becomes independent of the downstream coordinate x so that u = u(y) alone and v = 0.

9.2.1 Steady Flow between Parallel Plates

The flow is sustained by an externally applied pressure gradient (∂p/∂x ̸= 0) in the x-direction, and horizontal
motion of the upper plate at speed U in the x-direction. For a fully developed flow, u = (u(y), 0, 0), and the
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x- and y-momentum equations reduce to:

0 = −1

ρ

∂p

∂x
+ ν

d2u

dy2
, and 0 = −1

ρ

∂p

∂y
. (9.4)

From this, the velocity profile can be found to be:

u(y) =
U

h
y − 1

2µ

dp

dx
y(h− y) (9.5)

The volume flow rate q per unit width of the channel (out of plane) is:

q =

∫ h

0

udy = U
h

2

[
1− h2

6µU

dp

dx

]
(9.6)

so that the average velocity is:

V ≡ q

h
=

1

h

∫ h

0

udy =
U

2

[
1− h2

6µU

dp

dx

]
(9.7)

Depending on the configuration of U and (∂p/∂x, there are various possible cases.

Plane Couette flow. When the flow is driven by the motion of the upper plate alone, without any
externally imposed pressure gradient, it is called a plane Couette flow. Velocity profile:

u(y) =
U

h
y −

�������1

2µ

dp

dx
y(h− y) (9.8)

Shear stress:
τ = µ(du/dy) = µU/h (9.9)

Plane Poisseuille flow. When the flow is driven by an externally imposed pressure gradient without
motion of either plate, it is called a plane Poiseuille flow. Velocity profile:

u(y) =
�
��U

h
y − 1

2µ

dp

dx
y(h− y) (9.10)

Shear stress:

τ = µ
du

dy
= −

(
h

2
− y

)
dp

dx
, (9.11)
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9.2.2 Steady Flow in a Round Tube

A second geometry for which there is an exact solution is steady, fully developed laminar flow through a
round tube of constant radius a, frequently called circular Poiseuille flow.
The flow is axisymmetric, and cylindrical coordinates with z along the tube will be used. When the flow is
fully developed, the only non-zero component of velocity is the axial velocity uz(R), and u = (0, 0, uz(R))
automatically satisfies the continuity equation. The radial and angular equations of motion reduce to:

0 = ∂p/∂φ and 0 = ∂p/∂R, (9.12)

so p is a function of z alone. The z-momentum equation gives:

0 = −dp
dz

+
µ

R

d

dR

(
R
duz
dR

)
(9.13)

The velocity distribution follows as:

uz(R) =
R2 − a2

4µ

dp

dz
(9.14)

and the shear stress (and maximum shear stress) as:

σzR = τ = µ
∂uz
∂R

=
R

2

dp

dz′
and τ0 =

a

2

dp

dz
(9.15)

Integrating the velocity distribution over the cross-sectional area yields the volumetric flow rate Q and
average velocity over the cross-section V as

Q =

∫ a

0

u(R)2πRdR = −πa
4

8µ

dp

dz′
, and V =

Q

πa2
= − a2

8µ

dp

dz
(9.16)

9.2.3 Steady Flow between Concentric Rotating Cylinders

A third example is the steady flow between two con-
centric, rotating cylinders, also known as circular Cou-
ette flow. The flow is axisymmetric, and cylindri-
cal coordinates with z directed into the plane are
used. When the flow is fully developed, the only non-
zero component of velocity is the angular uϕ(R), and
u = (0, uϕ(R), 0) automatically satisfies the continuity
equation. The momentum equations for the radial and
tangential directions are:

−
u2φ
R

= −1

ρ

dp

dR
, and 0 = µ

d

dR

[
1

R

d

dR
(Ruφ)

]
(9.17)

The velocity distribution is given by

uφ(R) =
1

R2
2 −R2

1

{[
Ω2R

2
2 − Ω1R

2
1

]
R− [Ω2 − Ω1]

R2
1R

2
2

R

}
(9.18)

Limiting case 1. As R2 → ∞ with Ω2 = 0, the velocity distribution reduces to

uφ(R) =
Ω1R

2
1

R
(9.19)

which is identical to that of an ideal vortex, see (5.2), for R > R1

uθ = Γ/2πR (9.20)

when Γ = 2πΩ1R
2
1. This is the only example of a viscous solution that is completely irrotational.
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Limiting case 2. As R1 → ∞ with Ω1 = 0, the velocity distribution reduces to

uφ(R) = Ω2R (9.21)

This produces steady viscous flow within a cylindrical tank of radius R2 rotating at rate Ω2, which is the
velocity field of rigid body rotation (Sij = 0).

9.6 Low Reynolds Number Viscous Flow Past a Sphere

Consider the problem of steady constant-density flow of a viscous fluid at speed U around an object (size
L), governed by the steady form of equation (9.1):

ρu · ∇u+∇p = µ∇2u (9.22)

The focus will be on the limit of low Reynolds numbers. In that case, inertia is negligible and the pressure
term is scaled using a viscous stress

µ∂u/∂y ∼ µU/L (9.23)

(instead of the dynamic (inertial) pressure ρU2 used in ch. 4.11) leading to

p∗ = (p− p∞)L/µU (9.24)

Such that:
∇p = µ∇2u (9.25)

This equation is valid for creeping flows (Re → 0), such as falling mist droplets in the atmosphere, or the
flow of molten plastic during moulding.

We begin by considering the near-field flow around a stationary sphere of radius a placed in a uniform stream
of speed U with Re → 0. The problem is axisymmetric (analyzed in spherical coordinates), that is, the flow
patterns are identical in all planes parallel to U and passing through the center of the sphere. The velocity
components can be written as:

ur = U cos θ

(
1− 3a

2r
+

a3

2r3

)
, and uθ = −U sin θ

(
1− 3a

4r
− a3

4r3

)
(9.26)

The pressure is found by integrating the momentum equation ∇p = µ∇2u. The result is:

p− p∞ = −3µaU cos θ

2r2
(9.27)

The maximum p − p∞ = 3µU/2a occurs at the forward stagnation point (θ = π), while the minimum
p− p∞ = −3µU/2a occurs at the rear stagnation point (θ = 0).

The drag force D on the sphere can be determined by integrating its surface pressure and shear stress
distributions to find:

D = 6πµaU (9.28)

which is known as Stokes’ law of resistance.

The drag coefficient, CD, defined by (4.47) with A = πa2, for Stokes’ sphere is:

CD =
D

1
2ρU

2πa2
=

24

Re
(9.29)
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Millikan’s experiment. Millikan (1911) used Stokes’ drag formula to measure the charge of an electron
(and won the Nobel prize).

Experiment : Two horizontal parallel plates are charged by a battery. Oil is sprayed through a very fine
hole in the upper plate and develops static charge (+) by losing a few (n) electrons in passing through the
small hole. If the plates are charged by the switch (upper plate negative and bottom plate positive), then
an upward electric force neE will act on each of the drops, where E = Vb/L is the electric field, and e is the
elementary charge of an electron.

Step 1 : Find the radius a of the falling droplets at zero field E.
The falling body reaches its terminal velocity U when it no longer accelerates, at which point the effective
weight (weight minus buoyancy force) equals the viscous drag :

(4/3)πa3g (ρ′ − ρ) = 6πµaU

with ρ′ and ρ the density of the droplet and air, µ the viscosity of air and U is measured by the observation
telescope. This equation can be solved for a.

Step 2 : Find the charge ne of the droplets.
Next, the upper plate is negatively charged, so that the electric field is pointing upward. The droplets will
reverse direction and accelerate upward. Once the terminal velocity Uu is reached, there must be a balance
between upward forces (electric + buoyancy) and downward forces (weight + drag):

6πµUua+ (4/3)πa3g (ρ′ − ρ) = neE,

which, upon measurement of Uu and knowledge of a from step 1 , can be solved for ne. As n must be an
integer, data from many droplets may be compared to identify the minimum difference that must be e, the
charge of a single electron.
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